El legado científico de Hans Christian Ørsted

https://cdn11.bigcommerce.com/s-yzgoj/images/stencil/1280x1280/products/1558702/4223432/apief3ktf__01900.1626727680.jpg

Hans Christian Ørsted es recordado como una de las figuras fundamentales en la historia de la ciencia, especialmente por su contribución al descubrimiento de la relación entre la electricidad y el magnetismo. Este físico y químico danés, nacido en 1777, realizó un experimento crucial en 1820 que sentaría las bases del electromagnetismo, rama clave para el desarrollo tecnológico de los siglos XIX y XX.

El contexto científico antes de Ørsted

En la Europa a inicios del siglo XIX, los estudiosos mostraban gran interés por la electricidad y sus usos, aunque la relación entre los fenómenos eléctricos y magnéticos aún no se entendía completamente. Las contribuciones de Alessandro Volta, Benjamin Franklin y otros habían aportado instrumentos y primeras teorías, pero el magnetismo y la electricidad continuaban siendo vistos como fenómenos independientes.

Ørsted, influenciado por las ideas del Naturphilosophie y por el ambiente intelectual de Copenhague, se preguntaba si había una relación oculta entre estos dos ámbitos aparentemente independientes. La posibilidad de una conexión era un tema recurrente en los debates académicos, pero aún no existía evidencia experimental.

El importante experimento de 1820

El hallazgo de Ørsted tuvo lugar durante una lección universitaria frente a sus alumnos en la Universidad de Copenhague. Utilizando una pila voltaica, cableado y una aguja magnética (brújula), Ørsted observó que, al cerrar el circuito de la pila, la aguja de la brújula se desviaba. El paso de la corriente eléctrica generaba un campo magnético que actuaba sobre el imán de la brújula. Cuando interrumpía la corriente, la aguja regresaba a su posición inicial, señalando una relación inmediata y directa entre ambos fenómenos.

El fenómeno que descubrió Ørsted puede resumirse de la siguiente manera: una corriente eléctrica produce un campo magnético a su alrededor. Este resultado parecía sencillo, pero revolucionó completamente la comprensión de la física de la época.

Consecuencias científicas y tecnológicas

El descubrimiento de Ørsted tuvo repercusiones inmediatas en la comunidad científica. André-Marie Ampère, inspirado por los resultados de Ørsted, desarrolló la teoría matemática del electromagnetismo, formulando las leyes que gobiernan la interacción entre corriente y magnetismo. Posteriormente, Michael Faraday aprovecharía este principio básico para descubrir la inducción electromagnética, que hizo posible el desarrollo de los generadores eléctricos.

Entre los dispositivos que surgieron directa o indirectamente por este hallazgo destacan:

El imán eléctrico: desarrollado poco tiempo después, el imán eléctrico es la base de tecnologías que se encuentran en grúas industriales, campanas, relés y trenes de alta velocidad.

El telégrafo eléctrico: uno de los primeros sistemas de comunicación a distancia se basó en la utilización de campos electromagnéticos.

El motor eléctrico: la comprensión de la relación entre electricidad y magnetismo permitió la invención de motores capaces de transformar energía eléctrica en movimiento, pieza clave en la industrialización.

Consolidación del electromagnetismo como ciencia

La observación efectuada por Ørsted permitió el avance hacia teorías más extensas. James Clerk Maxwell, varios años después, consiguió integrar las leyes del electromagnetismo en un sistema de ecuaciones, sentando las bases de una de las teorías físicas más destacadas de la era moderna. Áreas como la electrodinámica, las telecomunicaciones, la producción de energía eléctrica y la moderna electrónica derivan del principio descubierto por Ørsted.

Ejemplos prácticos y casos de aplicación

El efecto del trabajo de Ørsted se refleja en actividades diarias y en diferentes sectores industriales. Las tarjetas de crédito cuentan con bandas magnéticas, las puertas automáticas y los sistemas de seguridad utilizan sensores de electromagnetismo, y los tendidos eléctricos dependen de generadores basados en el principio de la inducción electromagnética, que se originó a partir del descubrimiento realizado por Ørsted. Incluso la tecnología de los celulares y la resonancia magnética nuclear tienen sus fundamentos en el electromagnetismo.

Asimismo, la pedagogía científica ha incorporado el experimento de Ørsted como un ejemplo esencial para ilustrar a estudiantes la trascendencia de la experimentación y la interconexión de fenómenos naturales anteriormente considerados independientes.

Herencia y impacto en la cultura

Hans Christian Ørsted es una destacada personalidad en la ciencia de Dinamarca; su nombre se vincula con la unidad de medida del campo magnético en el sistema CGS, conocida como «oersted». Instituciones de investigación, galardones científicos y monumentos honran su legado. Además de su hallazgo, Ørsted fue un intelectual humanista que impulsó la unión de la ciencia y la cultura, creyendo firmemente en que comprender la naturaleza fomenta la creatividad y el avance social.

La labor de Ørsted ejemplifica la importancia de la observación rigurosa y la formulación de hipótesis en la construcción del conocimiento científico. Su experimento, sencillo en su concepción pero revolucionario en sus implicaciones, revela cómo una pregunta persistente puede abrir caminos inesperados y transformar para siempre el horizonte tecnológico y científico de la humanidad.

Ørsted se embarcó en la tarea de descubrir la esencia de la realidad, motivado por la fascinación por las conexiones invisibles aunque poderosas. Este esfuerzo nos recuerda que los grandes hallazgos frecuentemente surgen de una curiosidad innata y la habilidad de ver más allá de los límites del saber convencional.

Por Gabino Trujillo