La gobernanza internacional de la inteligencia artificial (IA) reúne a gobiernos, organizaciones internacionales, empresas, academia y sociedad civil para definir reglas, normas y mecanismos que orienten el desarrollo y uso de estas tecnologías. Los debates combinan cuestiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se presentan los temas centrales, ejemplos concretos y mecanismos que se proponen o aplican en distintos foros.
Amenazas para la seguridad y la integridad
La preocupación por la seguridad incluye fallos accidentales, usos maliciosos y consecuencias estratégicas a gran escala. Entre los puntos clave están:
- Riesgos sistémicos: posibilidad de que modelos muy potentes actúen de forma imprevisible o escapen a controles, afectando infraestructuras críticas.
- Uso dual y militarización: aplicación de IA en armas, vigilancia y ciberataques. En foros de la ONU y del Convenio sobre Ciertas Armas Convencionales se discute cómo regular o prohibir sistemas de armas completamente autónomas.
- Reducción del riesgo por diseño: prácticas como pruebas adversarias, auditorías de seguridad, y exigencia de evaluaciones de riesgo antes del despliegue.
Ejemplo: en el ámbito multilateral se discute la creación de normas vinculantes sobre SALA (sistemas de armas letales autónomas) y procedimientos de verificación para evitar proliferación.
Derechos humanos, privacidad y vigilancia
La IA plantea retos para derechos civiles y libertades públicas:
- Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
- Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
- Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.
Caso: la proliferación de campañas de desinformación impulsadas por la generación automática de contenido ha desencadenado discusiones en foros electorales y ha motivado propuestas que buscan imponer obligaciones de transparencia respecto al empleo de sistemas generativos dentro de las campañas.
Equidad, no discriminación y inclusión
Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:
- Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
- Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.
Dato y ejemplo: diversas investigaciones han evidenciado que los modelos formados con información sesgada ofrecen un rendimiento inferior para los colectivos menos representados; por esta razón, crece la demanda de iniciativas como las evaluaciones de impacto social y los requisitos de pruebas públicas.
Transparencia, explicabilidad y trazabilidad
Los reguladores analizan cómo asegurar que los sistemas avanzados resulten entendibles y susceptibles de auditoría:
- Obligaciones de transparencia: comunicar cuando una resolución automatizada impacta a una persona, divulgar documentación técnica (fichas del modelo, fuentes de datos) y ofrecer vías de reclamación.
- Explicabilidad: proporcionar niveles adecuados de detalle técnico adaptados a distintos tipos de audiencia (usuario final, autoridad reguladora, instancia judicial).
- Trazabilidad y registro: conservar registros de entrenamiento y operación que permitan realizar auditorías en el futuro.
la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo
Cumplimiento y responsabilidad legal
La asignación de responsabilidades ante daños generados por IA es un tema central:
- Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
- Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
- Reparación a las víctimas: mecanismos rápidos para compensación y remediación.
Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.
Derechos de propiedad intelectual y disponibilidad de datos
El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:
- Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
- Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.
Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.
Economía, mercado laboral y dinámica competitiva
La IA puede transformar mercados, trabajos y estructuras empresariales:
- Sustitución y creación de empleo: estudios muestran efectos heterogéneos: algunas tareas se automatizan, otras se complementan; políticas activas de formación son clave.
- Concentración de mercado: riesgo de monopolios por control de datos y modelos centrales; discusión sobre políticas de competencia y interoperabilidad.
- Impuestos y redistribución: propuestas para impuestos sobre beneficios derivados de automatización o para financiar protección social y reentrenamiento.
Ejemplo: variantes regulatorias incluyen incentivos fiscales para inversiones en capacitación y cláusulas en contratos públicos que favorezcan proveedores locales.
Sostenibilidad ambiental
El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:
- Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
- Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.
Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.
Normas técnicas, estándares y interoperabilidad
La adopción de estándares facilita seguridad, confianza y comercio:
- Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
- Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
- Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.
Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.
Verificación, cumplimiento y mecanismos multilaterales
Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:
- Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
- Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
- Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.
Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.
Instrumentos normativos y recursos aplicados
Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:
- Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
- Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
- Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.
Gobernanza democrática y participación de la ciudadanía
La legitimidad de las reglas depende de la inclusión:
- Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
- Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.
Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.
Sobresalientes tensiones geopolíticas
La búsqueda por liderar la IA conlleva riesgos de fragmentación:
- Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
- Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.
Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.
Iniciativas y menciones multilaterales
Existen varias iniciativas que sirven de marco de referencia:
- Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
- Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
- Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.
Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.
La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

